Numerical simulation of propagating skyrmions

In the same materials, both a skyrmion, with $Q=1$, and a skyrmionium, with $Q=0$, can be supported.

Apply a spin current in the $x$ direction and follow the dynamics of a skyrmion and a skyrmionium.

https://screencast-o-matic.com/watch/crlnjFVIW8q

https://screencast-o-matic.com/watch/crlnjuVIWPD

Steady-state motion within the Landau-Lifshitz (LL) equation

The conservative (Hamiltonian) LL equation associated with the energy $E$ is

$$ \frac{\partial \bm{m}}{\partial t} = -\bm{m}\times\bm{h}{\rm eff},\qquad \bm{h}{\rm eff} = -\frac{\delta E}{\delta\bm{m}} = \Delta\bm{m} - 2\lambda \bm{\hat{e}}\mu\times\partial\mu\bm{m} + m_3\bm{\hat{e}}_3. $$

Assume a traveling solitary wave, $\bm{m}=\bm{m}(x-vt,y)$. The LL becomes

$$ v\partial_1\bm{m} =\bm{m}\times\bm{h}_{\rm eff}. $$

Take the cross product with $\partial_2\bm{m}$ then the dot product with $\bm{m}$ to obtain

$$ vq = -\bm{h}_{\rm eff}\cdot\partial_2\bm{m} = \frac{\delta E}{\delta\bm{m}}\cdot\partial_2\bm{m}. \tag{1} $$

At this point, it is very helpful to introduce the stress tensor $\sigma_{\mu\nu}$ with $\mu,\nu=1,2$ which has the property

$$ \partial_\nu\sigma_{\mu\nu} = -\bm{h}{\rm eff}\cdot\partial\mu\bm{m} \Rightarrow \partial_\nu\sigma_{\mu\nu} = \frac{\delta E}{\delta\bm{m}}\cdot\partial_\mu\bm{m}. \tag{2} $$

[The latter form demonstrates the plausibility for the existence of the stress tensor.]

For example, for the model with exchange and anisotropy, the stress tensor is

$$ \begin{aligned} \sigma_{11} & = \frac{1}{2}(\partial_2\bm{m}\cdot\partial_2\bm{m} - \partial_1\bm{m}\cdot\partial_1\bm{m}) + \frac{1}{2} (m_1^2 + m_2^2) \\ \sigma_{12} & = -\partial_1\bm{m}\cdot\partial_2\bm{m} \\ \sigma_{21} & = -\partial_1\bm{m}\cdot\partial_2\bm{m} \\ \sigma_{22} & = \frac{1}{2}(\partial_1\bm{m}\cdot\partial_1\bm{m} - \partial_2\bm{m}\cdot\partial_2\bm{m}) + \frac{1}{2} (m_1^2 + m_2^2). \end{aligned} $$

We now go back to Eq. (1 )and substitute Eq. (2),